Multiple solutions of double phase variational problems with variable exponent
نویسندگان
چکیده
منابع مشابه
Multiple Solutions to Non-convex Variational Problems with Implications for Phase Transitions and Numerical Computation
Non-convex variational/boundary-value problems are studied using a modified version of the Ericksen bar model in nonlinear elasticity. The strain-energy function is a general fourth-order polynomial in a suitable measure of strain that provides a convenient model for the study of, for example, phase transitions. On the basis of a canonical duality theory, the nonlinear differential equation for...
متن کاملNonlinear eigenvalue problems in Sobolev spaces with variable exponent
Abstract. We study the boundary value problem −div((|∇u|1 + |∇u|2)∇u) = f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain in R . We focus on the cases when f±(x, u) = ±(−λ|u| u+ |u|u), where m(x) := max{p1(x), p2(x)} < q(x) < N ·m(x) N−m(x) for any x ∈ Ω. In the first case we show the existence of infinitely many weak solutions for any λ > 0. In the second case we prove that if λ is...
متن کاملOn nonlinear evolution variational inequalities involving variable exponent
In this paper, we discuss a class of quasilinear evolution variational inequalities with variable exponent growth conditions in a generalized Sobolev space. We obtain the existence of weak solutions by means of penalty method. Moreover, we study the extinction properties of weak solutions to parabolic inequalities and provide a sufficient condition that makes the weak solutions vanish in a fini...
متن کاملExistence of Solutions for a Class of Variable Exponent Integrodifferential System Boundary Value Problems
This paper investigates the existence of solutions for a class of variable exponent integrodifferential system with multipoint and integral boundary value condition in half line. When the nonlinearity term f satisfies subp− − 1 growth condition or general growth condition, we give the existence of solutions and nonnegative solutions via Leray-Schauder degree at nonresonance, respectively. Moreo...
متن کاملExistence of multiple solutions for Sturm-Liouville boundary value problems
In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Calculus of Variations
سال: 2020
ISSN: 1864-8266,1864-8258
DOI: 10.1515/acv-2018-0003